Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(13): eadm9859, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536921

RESUMEN

Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with poor prognosis and resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We previously showed that KEAP1 mutant tumors consume glutamine to support the metabolic rewiring associated with NRF2-dependent antioxidant production. Here, using preclinical patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the glutamine antagonist prodrug DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumors by inhibiting glutamine-dependent nucleotide synthesis and promoting antitumor T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we demonstrate that DRP-104 reverses T cell exhaustion, decreases Tregs, and enhances the function of CD4 and CD8 T cells, culminating in an improved response to anti-PD1 therapy. Our preclinical findings provide compelling evidence that DRP-104, currently in clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer.


Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Glutamina/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Mutación
2.
Cancer Res ; 84(3): 349-350, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38117482

RESUMEN

A promising approach to treat solid tumors involves disrupting their reliance on glutamine, a key component for various metabolic processes. Traditional attempts using glutamine inhibitors like 6-diazo-5-oxo-L-norleucine (DON) and CB-839 were unsuccessful, but new hope arises with DRP-104, a prodrug of DON. This compound effectively targets tumor metabolism while minimizing side effects. In a recent study published in Nature Cancer, Encarnación-Rosado and colleagues demonstrated in preclinical models that pancreatic ductal adenocarcinoma (PDAC) responds well to DRP-104, although tumors adapt through the MEK/ERK signaling pathway, which can be countered by the MEK inhibitor trametinib. In a related study, Recouvreux and colleagues found that DON is effective against pancreatic tumors, revealing that PDAC tumors upregulate asparagine synthesis in response to DON, making them susceptible to asparaginase treatment. Both studies underscore the potential of inhibiting glutamine metabolism and adaptive pathways as a promising strategy against PDAC. These findings pave the way for upcoming clinical trials utilizing DRP-104 and similar glutamine antagonists in the battle against solid tumors.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Glutamina/metabolismo , Diazooxonorleucina/farmacología , Diazooxonorleucina/uso terapéutico , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Quinasas de Proteína Quinasa Activadas por Mitógenos
3.
Cell Rep ; 42(11): 113295, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37889752

RESUMEN

Lung cancer treatment has benefited greatly through advancements in immunotherapies. However, immunotherapy often fails in patients with specific mutations like KEAP1, which are frequently found in lung adenocarcinoma. We established an antigenic lung cancer model and used it to explore how Keap1 mutations remodel the tumor immune microenvironment. Using single-cell technology and depletion studies, we demonstrate that Keap1-mutant tumors diminish dendritic cell and T cell responses driving immunotherapy resistance. This observation was corroborated in patient samples. CRISPR-Cas9-mediated gene targeting revealed that hyperactivation of the NRF2 antioxidant pathway is responsible for diminished immune responses in Keap1-mutant tumors. Importantly, we demonstrate that combining glutaminase inhibition with immune checkpoint blockade can reverse immunosuppression, making Keap1-mutant tumors susceptible to immunotherapy. Our study provides new insight into the role of KEAP1 mutations in immune evasion, paving the way for novel immune-based therapeutic strategies for KEAP1-mutant cancers.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Evasión Inmune , Línea Celular Tumoral , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/terapia , Adenocarcinoma del Pulmón/metabolismo , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamiento farmacológico , Mutación/genética , Inmunoterapia , Microambiente Tumoral
4.
bioRxiv ; 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37502974

RESUMEN

Tumor mutations can influence the surrounding microenvironment leading to suppression of anti-tumor immune responses and thereby contributing to tumor progression and failure of cancer therapies. Here we use genetically engineered lung cancer mouse models and patient samples to dissect how LKB1 mutations accelerate tumor growth by reshaping the immune microenvironment. Comprehensive immune profiling of LKB1 -mutant vs wildtype tumors revealed dramatic changes in myeloid cells, specifically enrichment of Arg1 + interstitial macrophages and SiglecF Hi neutrophils. We discovered a novel mechanism whereby autocrine LIF signaling in Lkb1 -mutant tumors drives tumorigenesis by reprogramming myeloid cells in the immune microenvironment. Inhibiting LIF signaling in Lkb1 -mutant tumors, via gene targeting or with a neutralizing antibody, resulted in a striking reduction in Arg1 + interstitial macrophages and SiglecF Hi neutrophils, expansion of antigen specific T cells, and inhibition of tumor progression. Thus, targeting LIF signaling provides a new therapeutic approach to reverse the immunosuppressive microenvironment of LKB1 -mutant tumors.

5.
bioRxiv ; 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37425844

RESUMEN

Loss-of-function mutations in KEAP1 frequently occur in lung cancer and are associated with resistance to standard of care treatment, highlighting the need for the development of targeted therapies. We have previously shown that KEAP1 mutant tumors have increased glutamine consumption to support the metabolic rewiring associated with NRF2 activation. Here, using patient-derived xenograft models and antigenic orthotopic lung cancer models, we show that the novel glutamine antagonist DRP-104 impairs the growth of KEAP1 mutant tumors. We find that DRP-104 suppresses KEAP1 mutant tumor growth by inhibiting glutamine-dependent nucleotide synthesis and promoting anti-tumor CD4 and CD8 T cell responses. Using multimodal single-cell sequencing and ex vivo functional assays, we discover that DRP-104 reverses T cell exhaustion and enhances the function of CD4 and CD8 T cells culminating in an improved response to anti-PD1 therapy. Our pre-clinical findings provide compelling evidence that DRP-104, currently in phase 1 clinical trials, offers a promising therapeutic approach for treating patients with KEAP1 mutant lung cancer. Furthermore, we demonstrate that by combining DRP-104 with checkpoint inhibition, we can achieve suppression of tumor intrinsic metabolism and augmentation of anti-tumor T cell responses.

6.
Cancer Discov ; 12(3): 625-643, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35101864

RESUMEN

The Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway plays a physiologic protective role against xenobiotics and reactive oxygen species. However, activation of NRF2 provides a powerful selective advantage for tumors by rewiring metabolism to enhance proliferation, suppress various forms of stress, and promote immune evasion. Genetic, epigenetic, and posttranslational alterations that activate the KEAP1/NRF2 pathway are found in multiple solid tumors. Emerging clinical data highlight that alterations in this pathway result in resistance to multiple therapies. Here, we provide an overview of how dysregulation of the KEAP1/NRF2 pathway in cancer contributes to several hallmarks of cancer that promote tumorigenesis and lead to treatment resistance. SIGNIFICANCE: Alterations in the KEAP1/NRF2 pathway are found in multiple cancer types. Activation of NRF2 leads to metabolic rewiring of tumors that promote tumor initiation and progression. Here we present the known alterations that lead to NRF2 activation in cancer, the mechanisms in which NRF2 activation promotes tumors, and the therapeutic implications of NRF2 activation.


Asunto(s)
Factor 2 Relacionado con NF-E2 , Neoplasias , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
7.
Sci Adv ; 7(47): eabk1023, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34788087

RESUMEN

The KEAP1/NRF2 pathway promotes metabolic rewiring to support redox homeostasis. Activation of NRF2 occurs in many cancers, often due to KEAP1 mutations, and is associated with more aggressive disease and treatment resistance. To identify metabolic dependencies in cancers with NRF2 activation, we performed a metabolism-focused CRISPR screen. Glucose-6-phosphate dehydrogenase (G6PD), which was recently shown to be dispensable in Ras-driven tumors, was a top dependency. G6PD catalyzes the committed step of the oxidative pentose phosphate pathway that produces NADPH and nucleotide precursors, but neither antioxidants nor nucleosides rescued. Instead, G6PD loss triggered tricarboxylic acid (TCA) intermediate depletion because of up-regulation of the alternative NADPH-producing enzymes malic enzyme and isocitrate dehydrogenase. In vivo, G6PD impairment markedly suppressed KEAP1 mutant tumor growth, and this suppression was further augmented by TCA depletion by glutaminase inhibition. Thus, G6PD inhibition­induced TCA depletion is a therapeutic vulnerability of NRF2-activated cancer.

8.
Cancer Discov ; 11(2): 293-307, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33177060

RESUMEN

In lung cancer, enrichment of the lower airway microbiota with oral commensals commonly occurs, and ex vivo models support that some of these bacteria can trigger host transcriptomic signatures associated with carcinogenesis. Here, we show that this lower airway dysbiotic signature was more prevalent in the stage IIIB-IV tumor-node-metastasis lung cancer group and is associated with poor prognosis, as shown by decreased survival among subjects with early-stage disease (I-IIIA) and worse tumor progression as measured by RECIST scores among subjects with stage IIIB-IV disease. In addition, this lower airway microbiota signature was associated with upregulation of the IL17, PI3K, MAPK, and ERK pathways in airway transcriptome, and we identified Veillonella parvula as the most abundant taxon driving this association. In a KP lung cancer model, lower airway dysbiosis with V. parvula led to decreased survival, increased tumor burden, IL17 inflammatory phenotype, and activation of checkpoint inhibitor markers. SIGNIFICANCE: Multiple lines of investigation have shown that the gut microbiota affects host immune response to immunotherapy in cancer. Here, we support that the local airway microbiota modulates the host immune tone in lung cancer, affecting tumor progression and prognosis.See related commentary by Zitvogel and Kroemer, p. 224.This article is highlighted in the In This Issue feature, p. 211.


Asunto(s)
Adenocarcinoma/mortalidad , Disbiosis/complicaciones , Neoplasias Pulmonares/mortalidad , Adenocarcinoma/complicaciones , Adenocarcinoma/microbiología , Adenocarcinoma/secundario , Animales , Estudios de Cohortes , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/microbiología , Neoplasias Pulmonares/patología , Ratones , Ratones Transgénicos , Microbiota , Metástasis de la Neoplasia , Estadificación de Neoplasias , New York , Modelos de Riesgos Proporcionales , Análisis de Supervivencia
9.
Anesthesiology ; 111(1): 122-6, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19512885

RESUMEN

BACKGROUND: The quaternary lidocaine derivative QX-314 is now known to produce long-lasting local anesthesia despite its positive charge. However, recent research suggests that the transient receptor potential vanilloid receptor agonist, capsaicin, should reduce the onset and offset times, whereas the transient receptor potential vanilloid receptor antagonist, capsazepine, should delay the onset time of sensory blockade by QX-314. METHODS: Sensory blockade in the tail of the conscious mouse was investigated using QX-314 2.5% in combination with capsaicin 0.1% and/or capsazepine (50 microg/ml). After tail injection, onset and offset times of local anesthesia were measured using the hot water tail-flick latency test. RESULTS: Capsaicin reduced the onset time of local anesthesia by QX-314 by more than 75% (Mann-Whitney test, P = 0.007; n = 10 per group) with no effect on the offset time of QX-314. For QX-314 without capsaicin, the onset and offset times were 23 min (interquartile range 15-30 min) and 300 min (interquartile range 285-375 min), respectively. For QX-314 with capsaicin, the onset and offset times were 4 min (interquartile range 3-8 min) and 360 min (interquartile range 285-435 min), respectively. In the antagonist study, capsazepine without added capsaicin decreased QX-314's efficacy, as 6 out of 9 mice did not develop sensory blockade after 90 min (Fisher exact test, P = 0.009). CONCLUSION: We have confirmed in a sensory blockade model that QX-314 is a local anesthetic with a slow onset and a long duration of reversible blockade. Capsaicin, a transient receptor potential vanilloid receptor agonist, accelerated QX-314's onset kinetics, whereas capsazepine, a transient receptor potential vanilloid receptor antagonist, decreased QX-314's efficacy. These observations raise the possibility that endovanilloids may modulate cell entry of QX-314.


Asunto(s)
Anestésicos Locales/farmacología , Lidocaína/análogos & derivados , Dimensión del Dolor/efectos de los fármacos , Canales Catiónicos TRPV/fisiología , Animales , Femenino , Lidocaína/farmacología , Ratones , Dimensión del Dolor/métodos , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/antagonistas & inhibidores , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...